
Embree
High Performance Ray Tracing Kernels

Version 2.5.1
April 30, 2015

2

Contents

1 Embree Overview 4
1.1 Version History . 4
1.2 Supported Platforms . 7
1.3 Embree Support and Contact . 7

2 Installation of Embree 8
2.1 Windows Installer . 8
2.2 Windows ZIP File . 8
2.3 Linux RPMs . 8
2.4 Linux tar.gz files . 9
2.5 Mac OS X PKG Installer . 9
2.6 Mac OS X tar.gz file . 10
2.7 Linking ISPC applications with Embree 10

3 Compiling Embree 11
3.1 Linux and Mac OS X . 11
3.2 Windows . 12
3.3 CMake configuration . 14

4 Embree API 15
4.1 Scene . 16
4.2 Geometries . 18
4.3 Ray Queries . 23
4.4 Buffer Sharing . 25
4.5 Linear Motion Blur . 26
4.6 User Data Pointer . 26
4.7 Geometry Mask . 26
4.8 Filter Functions . 27
4.9 Displacement Mapping Functions 28
4.10 Sharing Threads with Embree . 28
4.11 Join Build Operation . 29
4.12 Memory Monitor Callback . 29
4.13 Progress Monitor Callback . 30

5 Embree Tutorials 31
5.1 Triangle Geometry . 32
5.2 Dynamic Scene . 32
5.3 User Geometry . 33
5.4 Viewer . 33
5.5 Instanced Geometry . 34
5.6 Intersection Filter . 34
5.7 Pathtracer . 34
5.8 Hair Geometry . 35
5.9 Subdivision Geometry . 35

CONTENTS 3

5.10 Displacement Geometry . 36
5.11 BVH Builder . 36
5.12 Find Embree . 36

4

Chapter 1
Embree Overview

Embree is a collection of high-performance ray tracing kernels, developed at
Intel. The target user of Embree are graphics application engineers that want
to improve the performance of their application by leveraging the optimized ray
tracing kernels of Embree. The kernels are optimized for photo-realistic ren-
dering on the latest Intel® processors with support for SSE, AVX, AVX2, and the
16-wide Intel® Xeon Phi™ coprocessor vector instructions. Embree supports run-
time code selection to choose the traversal and build algorithms that bestmatches
the instruction set of your CPU. We recommend using Embree through its API
to get the highest benefit from future improvements. Embree is released as Open
Source under the Apache 2.0 license.

Embree supports applications written with the Intel SPMD Programm Com-
piler (ISPC, https://ispc.github.io/) by also providing an ISPC interface to
the core ray tracing algorithms. This makes it possible to write a renderer in
ISPC that leverages SSE, AVX, AVX2, and Xeon Phi instructions without any
code change. ISPC also supports runtime code selection, thus ISPC will select
the best code path for your application, while Embree selects the optimal code
path for the ray tracing algorithms.

Embree contains algorithms optimized for incoherent workloads (e.g. Monte
Carlo ray tracing algorithms) and coherent workloads (e.g. primary visibility and
hard shadow rays). For standard CPUs, the single-ray traversal kernels in Em-
bree provide the best performance for incoherent workloads and are very easy to
integrate into existing rendering applications. For Xeon Phi, a renderer written
in ISPC using the default hybrid ray/packet traversal algorithms have shown to
perform best, but requires writing the renderer in ISPC. In general for coherent
workloads, ISPC outperforms the single ray mode on each platform. Embree also
supports dynamic scenes by implementing high performance two-level spatial
index structure construction algorithms.

In addition to the ray tracing kernels, Embree provides some tutorials to
demonstrate how to use the Embree API. The example photorealistic renderer
that was originally included in the Embree kernel package is now available in a
separate GIT repository (see Embree Example Renderer).

1.1 Version History

1.1.1 New Features in Embree 2.5.1
• On dual socket workstations, the initial BVH build performance almost
doubled through a better memory allocation scheme.

• Reduced memory usage for subdivision surface objects with crease fea-
tures

http://www.apache.org/licenses/LICENSE-2.0
https://ispc.github.io/
https://embree.github.io/renderer.html

Embree Overview 5

• rtcCommit performance is robust against unset “flush to zero” and “denor-
mals are zero” flags. However, enabling these flags in your application is
still recommended.

• Internal cleanups and bugfixes.

1.1.2 New Features in Embree 2.5.0
• Improved hierarchy build performance on both Intel® Xeon® and Intel®
Xeon Phi™

• Vastly improved tessellation cache for ray tracing subdivision surfaces
• Added rtcGetUserData API call to query per geometry user pointer set
through rtcSetUserData.

• Added support for memory monitor callback functions to track and limit
memory consumption.

• Added support for progress monitor callback functions to track build
progress and cancel long build operations.

• BVH builders can be used to build user defined hierarchies inside the ap-
plication (see tutorial11)

• Switched to TBB as default tasking system on Xeon to get even faster hi-
erarchy build times and better integration for applications that also use
TBB.

• rtcCommit can get called from multiple TBB threads to join the hierarchy
build operations

1.1.3 New Features in Embree 2.4
• Support for Catmull Clark subdivision surfaces (triangle/quad base primi-
tives)

• Support for vector displacements on Catmull Clark subdivision surfaces
• Various bugfixes (e.g. 4-byte alignment of vertex buffers works)

1.1.4 New Features in Embree 2.3.3
• BVH builders more robustly handle invalid input data (Intel Xeon proces-
sor family)

• Motion blur support for hair geometry (Xeon)
• Improved motion blur performance for triangle geometry (Xeon)
• Improved robust ray tracing mode (Xeon)
• Added rtcCommitThread API call for easier integration into existing task-
ing systems (Xeon and Intel Xeon Phi coprocessor)

• Added support for recording and replaying all rtcIntersect/rtcOccluded
calls (Xeon and Xeon Phi)

1.1.5 New Features in Embree 2.3.2
• Improved mixed AABB/OBB-BVH for hair geometry (Xeon Phi)
• Reduced amount of pre-allocated memory for BVH builders (Xeon Phi)
• New 64 bit Morton code-based BVH builder (Xeon Phi)
• (Enhanced) Morton code-based BVH builders use now tree rotations to
improve BVH quality (Xeon Phi)

• Bug fixes (Xeon and Xeon Phi)

Embree Overview 6

1.1.6 New Features in Embree 2.3.1
• High quality BVH mode improves spatial splits which result in up to 30%
performance improvement for some scenes (Xeon).

• Compile time enabled intersection filter functions do not reduce perfor-
mance if no intersection filter is used in the scene (Xeon and Xeon Phi)

• Improved ray tracing performance for hair geometry by >20% on Xeon Phi.
BVH for hair geometry requires 20% less memory

• BVH8 for AVX/AVX2 targets improves performance for single ray tracing
on Haswell by up to 12% and by up to 5% for hybrid (Xeon)

• Memory conservative BVH for Xeon Phi now uses BVH node quantiza-
tion to lower memory footprint (requires half the memory footprint of the
default BVH)

1.1.7 New Features in Embree 2.3
• Support for ray tracing hair geometry (Xeon and Xeon Phi)
• Catching errors through error callback function
• Faster hybrid traversal (Xeon and Xeon Phi)
• New memory conservative BVH for Xeon Phi
• Faster Morton code-based builder on Xeon
• Faster binned-SAH builder on Xeon Phi
• Lots of code cleanups/simplifications/improvements (Xeon and Xeon Phi)

1.1.8 New Features in Embree 2.2
• Support for motion blur on Xeon Phi
• Support for intersection filter callback functions
• Support for buffer sharing with the application
• Lots of AVX2 optimizations, e.g. ~20% faster 8-wide hybrid traversal
• Experimental support for 8-wide (AVX/AVX2) and 16-wide BVHs (Xeon
Phi)

1.1.9 New Features in Embree 2.1
• New future proof API with a strong focus on supporting dynamic scenes
• Lots of optimizations for 8-wide AVX2 (Haswell architecture)
• Automatic runtime code selection for SSE, AVX, and AVX2
• Support for user-defined geometry
• New and improved BVH builders:

– Fast adaptive Morton code-based builder (without SAH-based top-
level rebuild)

– Both the SAH and Morton code-based builders got faster (Xeon Phi)
– New variant of the SAH-based builder using triangle pre-splits (Xeon

Phi)

1.1.10 Example Performance Numbers for Embree 2.1
BVH rebuild performance (including triangle accel generation, excluding mem-
ory allocation) for scenes with 2–12 million triangles:

• Intel® Core™ i7 (Haswell-based CPU, 4 cores @ 3.0 GHz)

– 7–8 million triangles/s for the SAH-based BVH builder
– 30–36 million triangles/s for the Morton code-based BVH builder

Embree Overview 7

• Intel® Xeon Phi™ 7120

– 37–40 million triangles/s for the SAH-based BVH builder
– 140–160 million triangles/s for the Morton code-based BVH builder

Rendering of the Crown model (crown.ecs) with 4 samples per pixel (-spp
4):

• Intel® Core™ i7 (Haswell-based CPU, 4 cores CPU @ 3.0 GHz)

– 1024×1024 resolution: 7.8 million rays per sec
– 1920×1080 resolution: 9.9 million rays per sec

• Intel® Xeon Phi™ 7120

– 1024×1024 resolution: 47.1 million rays per sec
– 1920×1080 resolution: 61.1 million rays per sec

1.1.11 New Features in Embree 2.0
• Support for the Intel® Xeon Phi™ coprocessor platform
• Support for high-performance “packet” kernels on SSE, AVX, and Xeon Phi
• Integration with the Intel® SPMD Program Compiler (ISPC)
• Instantiation and fast BVH reconstruction
• Example photo-realistic rendering engine for both C++ and ISPC

1.2 Supported Platforms
Embree supportsWindows (32 bit and 64 bit), Linux (64 bit) andMac OS X (64 bit).
The code compiles with the Intel Compiler, GCC, CLANG and theMicrosoft Com-
piler. Embree is tested with Intel Compiler 15.0.2, CLANG 3.4.2, GCC 4.8.2, and
Visual Studio 12 2013. Using the Intel Compiler improves performance by ap-
proximately 10%.

Performance also varies across different operating systems. Embree is opti-
mized for Intel CPUs supporting SSE, AVX, and AVX2 instructions, and requires
at least a CPU with support for SSE2.

The Xeon Phi version of Embree only works under Linux in 64 bit mode. For
compilation of the the Xeon Phi code the Intel Compiler is required. The host
side code compiles with GCC, CLANG, and the Intel Compiler.

1.3 Embree Support and Contact
If you encounter bugs please report them via Embree’s GitHub Issue Tracker.

For questions please write us at embree_support@intel.com.
To receive notifications of updates and new features of Embree please sub-

scribe to the Embree mailing list.

https://github.com/embree/embree/issues
mailto:embree_support@intel.com
https://groups.google.com/d/forum/embree/

8

Chapter 2
Installation of Embree

This section describes how to install Embree. You can download the referenced
installers from the embree webpage https://embree.github.com/.

2.1 Windows Installer
You can install the 64 bit version of the Embree library using the Windows in-
staller application embree-2.5.1.x64.exe. This will install the 64 bit Embree
version by default in Program Files\Intel\Embree 2.5.1. To install the 32 bit
Embree library use the embree-2.5.1.win32.exe installer. This will install the
32 bit Embree version by default in Program Files\Intel\Embree 2.5.1 on
32 bit systems and Program Files (x86)\Intel\Embree 2.5.1 on 64 bit sys-
tems.

You have to set the path to the lib folder manually to your PATH environment
variable for applications to find Embree. To compile applications with Embree
you also have to set the Include Directories path in Visual Studio to the
include folder of the Embree installation.

To uninstall Embree again open Programs and Features by clicking the
Start button, clicking Control Panel, clicking Programs, and then clicking
Programs and Features. Select Embree 2.5.1 and uninstall it.

2.2 Windows ZIP File
Embree is also delivered as a ZIP file embree-2.5.1.x64.windows.zip. After
unpacking this ZIP file you should set the path to the lib folder manually to
your PATH environment variable for applications to find Embree. To compile
applications with Embree you also have to set the Include Directories path
in Visual Studio to the include folder of the Embree installation.

If you plan to ship Embree with your application, best use the Embree version
from this ZIP file.

2.3 Linux RPMs
Use the provided RPMs to install Embree on your Linux system:

sudo rpm --install embree-devel-2.5.1-1.x86_64.rpm
sudo rpm --install embree-examples-2.5.1-1.x86_64.rpm

To also install the Intel® Xeon Phi™ version of Embree additionally install
the following Xeon Phi™ RPMs:

https://embree.github.com/

Installation of Embree 9

sudo rpm --install embree-devel_xeonphi-2.5.1-1.x86_64.rpm
sudo rpm --install embree-examples_xeonphi-2.5.1-1.x86_64.rpm

You also have to install the Intel® Threading Building Blocks (TBB) of at least
version 4.3 either using yum:

sudo yum install tbb.x86_64 tbb-devel.x86_64

or via apt-get:

sudo apt-get install libtbb-dev

Alternatively you can download the latest TBB version from https://www.
threadingbuildingblocks.org/download and set the LD_LIBRARY_PATH en-
vironment variable to point to the TBB library.

Under Linux Embree is installed by default in the /usr/lib and /usr/in-
clude directories. This way applications will find Embree automatically. The
Embree tutorials are installed into the /usr/bin/embree-2.5.1 folder. Specify
the full path to the tutorials to start them.

To uninstall Embree again just execute the following:

sudo rpm --erase embree-devel-2.5.1-1.x86_64
sudo rpm --erase embree-examples-2.5.1-1.x86_64

If you also installed the Xeon Phi™ RPMs you have to uninstall them too:

sudo rpm --erase embree-devel_xeonphi-2.5.1-1.x86_64
sudo rpm --erase embree-examples_xeonphi-2.5.1-1.x86_64

2.4 Linux tar.gz files
The Linux version of Embree is also delivered as a tar.gz file embree-2.5.1.x64.
linux.tar.gz. Unpack this file using tar and source the provided embree-
vars.sh to setup the environment properly:

tar xzf embree-2.5.1.x64.linux.tar.gz
source embree-2.5.1.x64.linux/embree-vars.sh

If youwant to ship Embree with your application best use the Embree version
provided through the tar.gz file.

2.5 Mac OS X PKG Installer
To install the Embree library on your Mac OS X system use the provided package
installer inside embree-2.5.1.x86_64.dmg. This will install Embree by default
into /opt/local/lib and /opt/local/include directories. The Embree tuto-
rials are installed into the /Applications/embree-2.5.1 folder.

You also have to install the Intel® Threading Building Blocks (TBB) using
MacPorts:

sudo port install tbb

Alternatively you can download the latest TBB version from https://www.
threadingbuildingblocks.org/download and set the DYLD_LIBRARY_PATH
environment variable to point to the TBB library.

To uninstall Embree again execute the uninstaller script /Applications/
embree-2.5.1/uninstall.command.

https://www.threadingbuildingblocks.org/download
https://www.threadingbuildingblocks.org/download
http://www.macports.org/
https://www.threadingbuildingblocks.org/download
https://www.threadingbuildingblocks.org/download

Installation of Embree 10

2.6 Mac OS X tar.gz file
The Mac OS X version of Embree is also delivered as a tar.gz file embree-2.
5.1.x64.macosx.tar.gz. Unpack this file using tar and source the provided
embree-vars.sh to setup the environment properly:

tar xzf embree-2.5.1.x64.macosx.tar.gz
source embree-2.5.1.x64.macosx/embree-vars.sh

If you want to ship Embree with your application please use the Embree li-
brary of the provided tar.gz file. The library name of that Embree library does
not contain any global path and also links against TBB without global path. This
ensures that the Embree (and TBB) library that you put next to your application
executable is used.

2.7 Linking ISPC applications with Embree
The precompiled Embree library uses the multi-target mode of ISPC. For your
ISPC application to properly link against Embree you also have to enable this
mode. You can do this by specifying multiple targets when compiling your ap-
plication with ISPC, e.g.:

ispc --target sse2,sse4,avx,avx2 -o code.o code.ispc

11

Chapter 3
Compiling Embree

3.1 Linux and Mac OS X
To compile Embree you need a modern C++ compiler that supports C++11. Em-
bree is tested with Intel® Compiler 15.0.2, CLANG 3.4.2, and GCC 4.8.2. If the
GCC that comes with your Fedora/Redhat/CentOS distribution is too old then
you can run the provided script scripts/install_linux_gcc.sh to locally in-
stall a recent GCC into $HOME/devtools-2.

Embree supports to use the Intel® Threading Building Blocks (TBB) as tasking
system. For performance and flexibility reasons we recommend to use Embree
with the Intel® Threading Building Blocks (TBB) and best also use TBB inside
your application. Optionally you can disable TBB in Embree through the RT-
CORE_TASKING_SYSTEM CMake variable.

Embree supported the Intel® SPMD Program Compiler (ISPC), which allows
straight forward parallelization of an entire renderer. If you do not want to
use ISPC then you can disable ENABLE_ISPC_SUPPORT in CMake. Otherwise,
download and install the ISPC binaries (we have tested ISPC version 1.8.0) from
ispc.github.io. After installation, put the path to ispc permanently into your
PATH environment variable or you need to correctly set the ISPC_EXECUTABLE
variable during CMake configuration.

You additionally have to install CMake 2.8.11 or higher and the developer
version of GLUT.

Under Mac OS X, all these dependencies can be installed using MacPorts:

sudo port install cmake tbb freeglut

Depending on you Linux distribution you can install these dependencies us-
ing yum or apt-get. Some of these packages might already be installed or might
have slightly different names.

Type the following to install the dependencies using yum:

sudo yum install cmake.x86_64
sudo yum install tbb.x86_64 tbb-devel.x86_64
sudo yum install freeglut.x86_64 freeglut-devel.x86_64
sudo yum install libXmu.x86_64 libXi.x86_64
sudo yum install libXmu-devel.x86_64 libXi-devel.x86_64

Type the following to install the dependencies using apt-get:

sudo apt-get install cmake-curses-gui
sudo apt-get install libtbb-dev
sudo apt-get install freeglut3-dev
sudo apt-get install libxmu-dev libxi-dev

https://ispc.github.io/downloads.html
http://www.macports.org/

Compiling Embree 12

Finally you can compile Embree using CMake. Create a build directory inside
the Embree root directory and execute “ccmake ..” inside this build directory.

mkdir build
cd build
ccmake ..

This will open a configuration dialog where you can perform various config-
urations as described below. After having configured Embree, press c (for con-
figure) and g (for generate) to generate a Makefile and leave the configuration.
The code can be compiled by executing make.

make

The executables will be generated inside the build folder. We recommend to
finally install the Embree library and header files on your system. Therefore set
the CMAKE_INSTALL_PREFIX to /usr in cmake and type:

sudo make install

If you keep the default CMAKE_INSTALL_PREFIX of /usr/local then you
have to make sure the path /usr/local/lib is in your LD_LIBRARY_PATH.

You can also uninstall Embree again by executing:

sudo make uninstall

If you cannot install Embree on your system (e.g. when you don’t have ad-
ministrator rights) you need to add embree_root_directory/build to your LD_LI-
BRARY_PATH (and SINK_LD_LIBRARY_PATH in case you want to use Embree on
Intel® Xeon Phi™ coprocessors).

3.1.1 Intel® Xeon Phi™ coprocessor
Embree supports the Intel® Xeon Phi™ coprocessor under Linux. To compile
Embree for Xeon Phi you need to enable the XEON_PHI_ISA option in CMake
and have the Intel Compiler and the Intel® Manycore Platform Software Stack
(Intel® MPSS) installed.

Enabling the buffer stride feature reduces performance for building spatial
hierarchies on Xeon Phi. Under Xeon Phi the Intel® Threading Building Blocks
(TBB) tasking system is not supported, and the implementation will always use
some internal tasking system.

3.2 Windows
To compile Embree under Windows you need a recent version of Visual Studio
that supports C++11. We have tested Visual Studio 2013, Visual Studio 2012, and
Visual Studio 2010. Under Visual Studio 2013 you can enable AVX2 in CMake,
however, Visual Studio 2012 supports at most AVX, and Visual Studio 2010 at
most the SSE4.2 CMake configuration.

Embree supports to use the Intel® Threading Building Blocks (TBB) as tasking
system. For performance and flexibility reasons we recommend to use Embree
with the Intel® Threading Building Blocks (TBB) and best also use TBB inside
your application. Optionally you can disable TBB in Embree through the RT-
CORE_TASKING_SYSTEM CMake variable.

Embree will either find the Intel® Threading Building Blocks (TBB) instal-
lation that comes with the Intel® Compiler, or you can install the binary dis-
tribution of TBB directly from www.threadingbuildingblocks.org into a folder

https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://www.threadingbuildingblocks.org/download

Compiling Embree 13

named tbb into your Embree root directory. You also have to make sure that the
libraries tbb.dll and tbb_malloc.dll can be found when executing your Embree ap-
plications, e.g. by putting the path to these libraries into your PATH environment
variable.

Embree supported the Intel® SPMD Program Compiler (ISPC), which allows
straight forward parallelization of an entire renderer. If you do not want to
use ISPC then you can disable ENABLE_ISPC_SUPPORT in CMake. Otherwise,
download and install the ISPC binaries (we have tested ISPC version 1.8.0) from
ispc.github.io. After installation, put the path to ispc.exe permanently into
your PATH environment variable or you need to correctly set the ISPC_EXE-
CUTABLE variable during CMake configuration.

You additionally have to install CMake (version 2.8.11 or higher). Note that
you need a native Windows CMake installation, because CMake under Cygwin
cannot generate solution files for Visual Studio.

3.2.1 Using the IDE
Run cmake-gui, browse to the Embree sources, set the build directory and click
Configure. Now you can select the Generator, e.g. “Visual Studio 12 2013” for a
32 bit build or “Visual Studio 12 2013 Win64” for a 64 bit build. Most configura-
tion parameters described for the Linux build can be set under Windows as well.
Finally, click “Generate” to create the Visual Studio solution files.

Option Description Default

CMAKE_CONFIGURATION_TYPEList of generated
configurations.

Debug;Release;RelWithDebInfo

USE_STATIC_RUNTIME Use the static
version of the
C/C++ runtime
library.

OFF
Table 3.1 – Windows-specific CMake
build options for Embree.

For compilation of Embree under Windows use the generated Visual Studio
solution file embree2.sln. The solution is by default setup to use the Microsoft
Compiler. You can switch to the Intel Compiler by right clicking onto the solution
in the Solution Explorer and then selecting the Intel Compiler. We recommend
using 64 bit mode and the Intel Compiler for best performance.

To build Embree with support for the AVX2 instruction set you need at least
Visual Studio 2013 Update 4. When switching to the Intel Compiler to build with
AVX2 you currently need to manually remove the switch /arch:AVX2 from the
embree_avx2 project, which can be found under Properties ⇒ C/C++ ⇒ All
Options⇒ Additional Options.

To build all projects of the solution it is recommend to build the CMake utility
project ALL_BUILD, which depends on all projects. Using “Build Solution” would
also build all other CMake utility projects (such as INSTALL), which is usually
not wanted.

We recommend enabling syntax highlighting for the .ispc source and .isph
header files. To do so open Visual Studio, go to Tools ⇒ Options ⇒ Text Editor
⇒ File Extension and add the isph and ispc extension for the “Microsoft Visual
C++” editor.

3.2.2 Using the Command Line
Embree can also be configured and built without the IDE using the Visual Studio
command prompt:

https://ispc.github.io/downloads.html
http://www.cmake.org/download/

Compiling Embree 14

cd path\to\embree
mkdir build
cd build
cmake -G "Visual Studio 12 2013 Win64" ..
cmake --build . --config Release

You can also build only some projects with the --target switch. Additional
parameters after “--” will be passed to msbuild. For example, to build the Em-
bree library in parallel use

cmake --build . --config Release --target embree -- /m

3.3 CMake configuration
The default CMake configuration in the configuration dialog should be appro-
priate for most usages. The following table describes all parameters that can be
configured in CMake:

Option Description Default

CMAKE_BUILD_TYPE Can be used to switch between
Debug mode (Debug), Release
mode (Release), and Release
mode with enabled assertions
and debug symbols
(RelWithDebInfo).

Release

COMPILER Select either GCC, ICC, or
CLANG as compiler.

GCC

ENABLE_ISPC_SUPPORT Enables ISPC support of Embree. ON
ENABLE_STATIC_LIB Builds Embree as a static library. OFF
ENABLE_TUTORIALS Enables build of Embree tutorials. ON
ENABLE_XEON_PHI_SUPPORTEnables generation of the Xeon

Phi version of Embree.
OFF

RTCORE_BACKFACE_CULLINGEnables backface culling, i.e. only
surfaces facing a ray can be hit.

OFF

RTCORE_BUFFER_STRIDE Enables the buffer stride feature. ON
RTCORE_INTERSECTION_FILTEREnables the intersection filter

feature.
ON

RTCORE_RAY_MASK Enables the ray masking feature. OFF
RTCORE_RETURN_SUBDIV_NORMALInstead of the triangle normal the

ray returns a smooth normal
based on evaluating the
subdivision surface patch.

OFF

RTCORE_TASKING_SYSTEM Chooses between Intel®
Threading Building Blocks (TBB)
or an internal tasking system
(INTERNAL).

TBB

XEON_ISA Select highest supported ISA on
Intel® Xeon® CPUs (SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, AVX,
AVX-I, or AVX2).

AVX2

Table 3.2 – CMake build options for Em-
bree.

15

Chapter 4
Embree API

The Embree API is a low level ray tracing API that supports defining and com-
mitting of geometry and performing ray queries of different types. Static and
dynamic scenes are supported, that may contain triangular geometry (including
linear motions for motion blur), instanced geometry, and user defined geometry.
Supported ray queries are, finding the closest scene intersection along a ray, and
testing a ray segment for any intersection with the scene. Single rays, as well as
packets of rays in a struct of array layout can be used for packet sizes of 1, 4, 8,
and 16 rays. Filter callback functions are supported, that get invoked for every
intersection encountered during traversal.

The Embree API exists in a C++ and ISPC version. This document describes
the C++ version of the API, the ISPC version is almost identical. The only differ-
ences are that the ISPC version needs some ISPC specific uniform type modifiers,
and limits the ray packets to the native SIMD size the ISPC code is compiled for.

The user is supposed to include the embree2/rtcore.h, and the embree2/
rtcore_ray.h file, but none of the other header files. If using the ISPC version of
the API, the user should include embree2/rtcore.isph and embree2/rtcore_
ray.isph.

#include <embree2/rtcore.h>
#include <embree2/rtcore_ray.h>

All API calls carry the prefix rtc which stands for ray tracing core. Before
invoking any API call, the Embree ray tracing core has to get initialized through
the rtcInit call. Before the application exits it should call rtcExit. Initializing
Embree again after an rtcExit is allowed.

rtcInit(NULL);
...
rtcExit();

It is strongly recommended to have the Flush to Zero and Denormals are
Zeromode of the MXCSR control and status register enabled for each thread be-
fore calling the rtcIntersect and rtcOccluded functions. Otherwise, under
some circumstances special handling of denormalized floating point numbers
can significantly reduce application and Embree performance. When using Em-
bree together with the Intel® Threading Building Blocks, it is sufficient to execute
the following code at the beginning of the application main thread (before the
creation of the tbb::task_scheduler_init object):

#include <xmmintrin.h>
#include <pmmintrin.h>
...
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);

Embree API 16

Embree processes some implementation specific configuration from the fol-
lowing locations in the specified order:

1) configuration string passed to the rtcInit function
2) .embree2 file in the application folder
3) .embree2 file in the home folder

This way the configuration for the application can be changed globally (either
through the rtcInit call or through the .embree2 file in the application folder)
and each user has the option to modify the configuration to fit its needs.

The threads calling the API functions should have at least 4MB of stack space
allocated. Also every Intel® Threading Building Blocks (TBB) worker thread
needs at least 4MB of stack space (which is the default for TBB).

API calls that access geometries are only thread safe as long as different ge-
ometries are accessed. Accesses to one geometry have to get sequenced by the
application. All other API calls are thread safe. The API calls are re-entrant, it
is thus safe to trace new rays and create new geometry when intersecting a user
defined object.

Each user thread has its own error flag in the API. If an error occurs when
invoking someAPI function, this flag is set to an error code if it stores no previous
error. The rtcGetError function reads and returns the currently stored error
and clears the error flag again.

Possible error codes returned by rtcGetError are:

Error Code Description

RTC_NO_ERROR No error occurred.
RTC_UNKNOWN_ERROR An unknown error has occurred.
RTC_INVALID_ARGUMENTAn invalid argument was specified.
RTC_INVALID_OPERATIONThe operation is not allowed for the specified

object.
RTC_OUT_OF_MEMORY There is not enough memory left to complete

the operation.
RTC_UNSUPPORTED_CPU The CPU is not supported as it does not support

SSE2.
RTC_CANCELLED The operation got cancelled by an Memory

Monitor Callback or Progress Monitor Callback
function.

Table 4.1 – Return values of rtcGetEr-
ror.

Using the rtcSetErrorFunction call, it is also possible to set a callback func-
tion that is called whenever an error occurs. The callback function gets passed
the error code, as well as some string that describes the error further. Passing
NULL to rtcSetErrorFunction disables the set callback function again. The pre-
viously described error flags are also set if an error callback function is present.

4.1 Scene
A scene is a container for a set of geometries of potentially different types. A
scene is created using the rtcNewScene function call, and destroyed using the
rtcDeleteScene function call. Two types of scenes are supported, dynamic and
static scenes. Different flags specify the type of scene to create and the type
of ray query operations that can later be performed on the scene. The follow-
ing example creates a scene that supports dynamic updates and the single ray
rtcIntersect and rtcOccluded calls.

Embree API 17

RTCScene scene = rtcNewScene(RTC_SCENE_DYNAMIC, RTC_INTERSECT1);
...
rtcDeleteScene(scene);

Using the following scene flags the user can select between creating a static
and dynamic scene.

Scene Flag Description

RTC_SCENE_STATIC Scene is optimized for static geometry.
RTC_SCENE_DYNAMIC Scene is optimized for dynamic geometry.

Table 4.2 – Dynamic type flags for rtc-
NewScene.

A dynamic scene is created by invoking rtcNewScene with the RTC_SCENE_
DYNAMIC flag. Different geometries can now be created inside that scene. Ge-
ometries are enabled by default. Once the scene geometry is specified, an rtc-
Commit call will finish the scene description and trigger building of internal data
structures. After the rtcCommit call it is safe to perform ray queries of the type
specified at scene construction time. Geometries can get disabled (rtcDisable
call), enabled again (rtcEnable call), and deleted (rtcDeleteGeometry call). Ge-
ometries can also get modified, including their vertex and index arrays. After
the modification of some geometry, rtcUpdate or rtcUpdateBuffer has to get
called for that geometry to specify which buffers got modified. Each modified
buffer can specified separately using the rtcUpdateBuffer function. In contrast
the rtcUpdate function simply tags each buffer of some geometry as modified.
If geometries got enabled, disabled, deleted, or modified an rtcCommit call has
to get invoked before performing any ray queries for the scene, otherwise the
effect of the ray query is undefined. During in rtcCommit call modifications to
the scene are not allowed.

A static scene is created by the rtcNewScene call with the RTC_SCENE_
STATIC flag. Geometries can only be created and modified until the first rtc-
Commit call. After the rtcCommit call, each access to any geometry of that static
scene is invalid, including enabling, disabling, modifying, and deletion of geome-
tries. Consequently, geometries that got created inside a static scene can only
get deleted by deleting the entire scene.

The modification of geometry, building of hierarchies using rtcCommit, and
tracing of rays have always to happen separately, never at the same time.

The following flags can be used to tune the used acceleration structure. These
flags are only hints and may be ignored by the implementation.

Scene Flag Description

RTC_SCENE_COMPACT Creates a compact data structure and avoids
algorithms that consume much memory.

RTC_SCENE_COHERENT Optimize for coherent rays (e.g. primary rays).
RTC_SCENE_INCOHERENTOptimize for in-coherent rays (e.g. diffuse

reflection rays).
RTC_SCENE_HIGH_QUALITYBuild higher quality spatial data structures.

Table 4.3 – Acceleration structure flags
for rtcNewScene.

The following flags can be used to tune the traversal algorithm that is used by
Embree. These flags are only hints and may be ignored by the implementation.

The second argument of the rtcNewScene function are algorithm flags, that
allow to specify which ray queries are required by the application. Calling for
a scene a ray query API function that is different to the ones specified at scene
creation time is not allowed. Further, the application should only pass ray query

Embree API 18

Scene Flag Description

RTC_SCENE_ROBUST Avoid optimizations that reduce arithmetic
accuracy.

Table 4.4 – Traversal algorithm flags for
rtcNewScene.

requirements that are really needed, to give Embree most freedom in choosing
the best algorithm. E.g. in case Embree implements no packet traversers for some
highly optimized data structure for single rays, then this data structure cannot
be used if the user enables any ray packet query.

Algorithm Flag Description

RTC_INTERSECT1 Enables the rtcIntersect and rtcOccluded
functions (single ray interface) for this scene.

RTC_INTERSECT4 Enables the rtcIntersect4 and rtcOccluded4
functions (4-wide packet interface) for this scene.

RTC_INTERSECT8 Enables the rtcIntersect8 and rtcOccluded8
functions (8-wide packet interface) for this scene.

RTC_INTERSECT16 Enables the rtcIntersect16 and rtcOccluded16
functions (16-wide packet interface) for this scene.

Table 4.5 – Enabled algorithm flags for
rtcNewScene.

4.2 Geometries
Geometries are always contained in the scene they are created in. Each ge-
ometry is assigned an integer ID at creation time, which is unique for that
scene. The current version of the API supports triangle meshes (rtcNewTrian-
gleMesh), Catmull-Clark subdivision surfaces (rtcNewSubdivisionMesh), hair
geometries (rtcNewHairGeometry), single level instances of other scenes (rtc-
NewInstance), and user defined geometries (rtcNewUserGeometry). The API is
designed in a way that easily allows adding new geometry types in later releases.

For dynamic scenes, the assigned geometry IDs fulfill the following proper-
ties. As long as no geometry got deleted, all IDs are assigned sequentially, start-
ing from 0. If geometries got deleted, the implementation will reuse IDs later on
in an implementation dependent way. Consequently sequential assignment is
no longer guaranteed, but a compact range of IDs. These rules allow the applica-
tion to manage a dynamic array to efficiently map from geometry IDs to its own
geometry representation.

For static scenes, geometry IDs are assigned sequentially starting at 0. This
allows the application to use a fixed size array to map from geometry IDs to its
own geometry representation.

Alternatively the application can also use the void rtcSetUserData (RTC-
Scene scene, unsigned geomID, void* ptr) function to set a pointer ptr to
its own geometry representation, and later read out this pointer again using the
void* rtcGetUserData (RTCScene scene, unsigned geomID) function.

4.2.1 Triangle Meshes
Triangle meshes are created using the rtcNewTriangleMesh function call, and
potentially deleted using the rtcDeleteGeometry function call.

The number of triangles, the number of vertices, and optionally the number
of time steps (1 for normal meshes, and 2 for linear motion blur) have to get spec-
ified at construction time of the mesh. The user can also specify additional flags

Embree API 19

that choose the strategy to handle that mesh in dynamic scenes. The following
example demonstrates how to create a triangle mesh without motion blur:

unsigned geomID = rtcNewTriangleMesh(scene, geomFlags, numTriangles, numVertices);

The following geometry flags can be specified at construction time of the
triangle mesh:

Geometry Flag Description

RTC_GEOMETRY_STATIC The mesh is considered static and should get
modified rarely by the application. This flag
has to get used in static scenes.

RTC_GEOMETRY_DEFORMABLEThe mesh is considered to deform in a coherent
way, e.g. a skinned character. The connectivity
of the mesh has to stay constant, thus
modifying the index array is not allowed. The
implementation is free to choose a BVH
refitting approach for handling meshes tagged
with that flag.

RTC_GEOMETRY_DYNAMICThe mesh is considered highly dynamic and
changes frequently, possibly in an unstructured
way. Embree will rebuild data structures from
scratch for this type of mesh.

Table 4.6 – Flags for the creation of new
geometries.

The triangle indices can be set by mapping and writing to the index buffer
(RTC_INDEX_BUFFER) and the triangle vertices can be set bymapping andwriting
into the vertex buffer (RTC_VERTEX_BUFFER). The index buffer contains an array
of three 32 bit indices, while the vertex buffer contains an array of three float
values aligned to 16 bytes. The 4th component of the aligned vertices can be
arbitrary. All buffers have to get unmapped before an rtcCommit call to the
scene.

struct Vertex { float x, y, z, a; };
struct Triangle { int v0, v1, v2; };

Vertex* vertices = (Vertex*) rtcMapBuffer(scene, geomID, RTC_VERTEX_BUFFER);
// fill vertices here
rtcUnmapBuffer(scene, geomID, RTC_VERTEX_BUFFER);

Triangle* triangles = (Triangle*) rtcMapBuffer(scene, geomID, RTC_INDEX_BUFFER);
// fill triangle indices here
rtcUnmapBuffer(scene, geomID, RTC_INDEX_BUFFER);

Also see tutorial00 for an example of how to create triangle meshes.

4.2.2 Subdivision Surfaces
Catmull-Clark subdivision surfaces for meshes consisting of triangle and quad
primitives (even mixed inside one mesh) are supported, including support for
edge creases, vertex creases, holes, and non-manifold geometry.

A subdivision surface is created using the rtcNewSubdivisionMesh function
call, and deleted again using the rtcDeleteGeometry function call.

unsigned rtcNewSubdivisionMesh(RTCScene scene,
RTCGeometryFlags flags,

Embree API 20

size_t numFaces,
size_t numEdges,
size_t numVertices,
size_t numEdgeCreases,
size_t numVertexCreases,
size_t numCorners,
size_t numHoles,
size_t numTimeSteps);

The number of faces (numFaces), edges/indices (numEdges), vertices (numVer-
tices), edge creases (numEdgeCreases), vertex creases (numVertexCreases),
holes (numHoles), and time steps (numTimeSteps) have to get specified at con-
struction time.

The following buffers have to get setup by the application: the face buffer
(RTC_FACE_BUFFER) contains the number edges/indices (3 or 4) of each of the
numFaces faces, the index buffer (RTC_INDEX_BUFFER) contains multiple (3 or
4) 32 bit vertex indices for each face and numEdges indices in total, the vertex
buffer (RTC_VERTEX_BUFFER) stores numVertices vertices as single precision x,
y, z floating point coordinates aligned to 16 bytes. The value of the 4th float used
for alignment can be arbitrary.

Optionally, the application can setup the hole buffer (RTC_HOLE_BUFFER)
with numHoles many 32 bit indices of faces that should be considered non-
existing.

Optionally, the application can fill the level buffer (RTC_LEVEL_BUFFER) with
a tessellation level for each or the edges of each face, making a total of numEdges
values. The tessellation level is a positive floating point value, that specifies
how many quads along the edge should get generated during tessellation. The
tessellation level is a lower bound, thus the implementation is free to choose a
larger level. If no level buffer is specified a level of 1 is used. Note that some edge
may be shared between (typically 2) faces. To guarantee a watertight tessellation,
the level of these shared edges has to be exactly identical.

Optionally, the application can fill the sparse edge crease buffers to make
some edges appear sharper. The edge crease index buffer (RTC_EDGE_CREASE_
INDEX_BUFFER) contains numEdgeCreases many pairs of 32 bit vertex indices
that specify unoriented edges. The edge creaseweight buffer (RTC_EDGE_CREASE_
WEIGHT_BUFFER) stores for each of theses crease edges a positive floating point
weight. The larger this weight, the sharper the edge. Specifying a weight of
infinity is supported and marks an edge as infinitely sharp. Storing an edge mul-
tiple times with the same crease weight is allowed, but has lower performance.
Storing an edge multiple times with different crease weights results in undefined
behavior. For a stored edge (i,j), the reverse direction edges (j,i) does not have to
get stored, as both are considered the same edge.

Optionally, the application can fill the sparse vertex crease buffers to make
some vertices appear sharper. The vertex crease index buffer (RTC_VERTEX_
CREASE_INDEX_BUFFER), contains numVertexCreases many 32 bit vertex in-
dices to specify a set of vertices. The vertex crease weight buffer (RTC_VERTEX_
CREASE_WEIGHT_BUFFER) specifies for each of these vertices a positive floating
point weight. The larger this weight, the sharper the vertex. Specifying a weight
of infinity is supported and makes the vertex infinitely sharp. Storing a vertex
multiple times with the same crease weight is allowed, but has lower perfor-
mance. Storing a vertex multiple times with different crease weights results in
undefined behavior.

Like for triangle meshes, the user can also specify a geometry mask and addi-
tional flags that choose the strategy to handle that subdivision mesh in dynamic
scenes.

Also see tutorial08 for an example of how to create subdivision surfaces.

Embree API 21

4.2.3 Hair Geometry
Hair geometries are supported, which consist of multiple hairs represented as
cubic Bézier curves with varying radius per control point. Individual hairs are
considered to be subpixel sized which allows the implementation to approximate
the intersection calculation. This in particular means that zooming onto one hair
might show geometric artifacts.

Hair geometries are created using the rtcNewHairGeometry function call,
and potentially deleted using the rtcDeleteGeometry function call.

The number of hair curves, the number of vertices, and optionally the number
of time steps (1 for normal curves, and 2 for linear motion blur) have to get
specified at construction time of the hair geometry.

The curve indices can be set bymapping andwriting to the index buffer (RTC_
INDEX_BUFFER) and the control vertices can be set by mapping and writing into
the vertex buffer (RTC_VERTEX_BUFFER). In case of linear motion blur, two vertex
buffers (RTC_VERTEX_BUFFER0 and RTC_VERTEX_BUFFER1) have to get filled, one
for each time step.

The index buffer contains an array of 32 bit indices pointing to the ID of the
first of four control vertices, while the vertex buffer stores all control points in
the form of a single precision position and radius stored in x, y, z, r order in
memory. The hair radii have to be greater or equal zero. All buffers have to get
unmapped before an rtcCommit call to the scene.

Like for triangle meshes, the user can also specify a geometry mask and ad-
ditional flags that choose the strategy to handle that mesh in dynamic scenes.

The following example demonstrates how to create some hair geometry:

unsigned geomID = rtcNewHairGeometry(scene, geomFlags, numCurves, numVertices);

struct Vertex { float x, y, z, r; };

Vertex* vertices = (Vertex*) rtcMapBuffer(scene, geomID, RTC_VERTEX_BUFFER);
// fill vertices here
rtcUnmapBuffer(scene, geomID, RTC_VERTEX_BUFFER);

int* curves = (int*) rtcMapBuffer(scene, geomID, RTC_INDEX_BUFFER);
// fill indices here
rtcUnmapBuffer(scene, geomID, RTC_INDEX_BUFFER);

Also see tutorial07 for an example of how to create and use hair geometry.

4.2.4 User Defined Geometry
User defined geometries make it possible to extend Embree with arbitrary types
of geometry. This is achieved by introducing arrays of user geometries as a spe-
cial geometry type. These objects do not contain a single user geometry, but
a set of such geometries, each specified by an index. The user has to provide
a user data pointer, bounding function as well as user defined intersect and oc-
cluded functions to create a set of user geometries. The user geometry to process
is specified by passing its user data pointer and index to each invocation of the
bounding, intersect, and occluded function. The bounding function is used to
query the bounds of each user geometry. When performing ray queries, Embree
will invoke the user intersect (and occluded) functions to test rays for intersec-
tion (and occlusion) with the specified user defined geometry.

As Embree supports different ray packet sizes, one potentially has to pro-
vide different versions of user intersect and occluded function pointers for these
packet sizes. However, the ray packet size of the called user function always

Embree API 22

matches the packet size of the originally invoked ray query function. Conse-
quently, an application only operating on single rays only has to provide single
ray intersect and occluded function pointers.

User geometries are created using the rtcNewUserGeometry function call,
and potentially deleted using the rtcDeleteGeometry function call. The follow-
ing example illustrates creating an array with two user geometries:

struct UserObject { ... };

void userBoundsFunction(UserObject* userGeom, size_t i, RTCBounds& bounds) {
bounds = <bounds of userGeom[i]>;

}

void userIntersectFunction(UserObject* userGeom, RTCRay& ray, size_t i) {
if (<ray misses userGeom[i]>)

return;
<update ray hit information>;

}

void userOccludedFunction(UserObject* userGeom, RTCRay& ray, size_t i) {
if (<ray misses userGeom[i]>)

return;
geomID = 0;

}

...

UserObject* userGeom = new UserObject[2];
userGeom[0] = ...
userGeom[1] = ...
unsigned geomID = rtcNewUserGeometry(scene, 2);
rtcSetUserData(scene, geomID, userGeom);
rtcSetBounds(scene, geomID, userBoundsFunction);
rtcSetIntersectFunction(scene, geomID, userIntersectFunction);
rtcSetOccludedFunction(scene, geomID, userOccludedFunction);

The user intersect function (userIntersectFunction) and user occluded
function (userOccludedFunction) get as input the pointer provided through the
rtcSetUserData function call, a ray, and the index of the geometry to process.
For ray packets, the user intersect and occluded functions also get a pointer to a
valid mask as input. The user provided functions should not modify any ray that
is disabled by that valid mask.

The user intersect function should return without modifying the ray struc-
ture if the user geometry is missed. If the geometry is hit, it has to update the hit
information of the ray (tfar, u, v, Ng, geomID, primID).

Also the user occluded function should return without modifying the ray
structure if the user geometry is missed. If the geometry is hit, it should set the
geomID member of the ray to 0.

See tutorial02 for an example of how to use the user defined geometries.

4.2.5 Instances
Embree supports instancing of scenes inside another scene by some transforma-
tion. As the instanced scene is stored only a single time, even if instanced to mul-
tiple locations, this feature can be used to create extremely large scenes. Only
single level instancing is supported by Embree natively, however, multi-level in-
stancing can principally be implemented through user geometries.

Embree API 23

Instances are created using the rtcNewInstance function call, and poten-
tially deleted using the rtcDeleteGeometry function call. To instantiate a scene,
one first has to generate the scene B to instantiate. Now one can add an instance
of this scene inside a scene A the following way:

unsigned instID = rtcNewInstance(sceneA, sceneB);
rtcSetTransform(sceneA, instID, RTC_MATRIX_COLUMN_MAJOR, &column_matrix_3x4);

One has to call rtcCommit on scene B before one calls rtcCommit on scene
A. When modifying scene B one has to call rtcModified for all instances of that
scene. If a ray hits the instance, then the geomID and primID members of the
ray are set to the geometry ID and primitive ID of the primitive hit in scene B,
and the instID member of the ray is set to the instance ID returned from the
rtcNewInstance function.

The rtcSetTransform call can be passed an affine transformation matrix
with different data layouts:

Layout Description

RTC_MATRIX_ROW_MAJOR The 3×4 float matrix is laid out in
row major form.

RTC_MATRIX_COLUMN_MAJOR The 3×4 float matrix is laid out in
column major form.

RTC_MATRIX_COLUMN_MAJOR_ALIGNED16The 3×4 float matrix is laid out in
column major form, with each
column padded by an additional 4th
component.

Table 4.7 – Matrix layouts for rtcSet-
Transform.

Passing homogeneous 4×4 matrices is possible as long as the last row is (0, 0,
0, 1). If this homogeneous matrix is laid out in row major form, use the RTC_MA-
TRIX_ROW_MAJOR layout. If this homogeneous matrix is laid out in columnmajor
form, use the RTC_MATRIX_COLUMN_MAJOR_ALIGNED16mode. In both cases, Em-
bree will ignore the last row of the matrix.

The transformation passed to rtcSetTransform transforms from the local
space of the instantiated scene to world space.

See tutorial04 for an example of how to use instances.

4.3 Ray Queries
The API supports finding the closest hit of a ray segment with the scene (rtcIn-
tersect functions), and determining if any hit between a ray segment and the
scene exists (rtcOccluded functions).

void rtcIntersect (RTCScene scene, RTCRay& ray);
void rtcIntersect4 (const void* valid, RTCScene scene, RTCRay4& ray);
void rtcIntersect8 (const void* valid, RTCScene scene, RTCRay8& ray);
void rtcIntersect16(const void* valid, RTCScene scene, RTCRay16& ray);
void rtcOccluded (RTCScene scene, RTCRay& ray);
void rtcOccluded4 (const void* valid, RTCScene scene, RTCRay4& ray);
void rtcOccluded8 (const void* valid, RTCScene scene, RTCRay8& ray);
void rtcOccluded16 (const void* valid, RTCScene scene, RTCRay16& ray);

The ray layout to be passed to the ray tracing core is defined in the embree2/
rtcore_ray.h header file. It is up to the user if he wants to use the ray structures
defined in that file, or resemble the exact same binary data layout with their

Embree API 24

own vector classes. The ray layout might change with new Embree releases as
new features get added, however, will stay constant as long as the major Embree
release number does not change. The ray contains the following data members:

Member In/Out Description

org in ray origin
dir in ray direction (can be unnormalized)
tnear in start of ray segment
tfar in/out end of ray segment, set to hit distance after intersection
time in time used for motion blur
mask in ray mask to mask out geometries
Ng out unnormalized geometry normal
u out barycentric u-coordinate of hit
v out barycentric v-coordinate of hit
geomID out geometry ID of hit geometry
primID out primitive ID of hit primitive
instID out instance ID of hit instance

Table 4.8 – Data fields of a ray.

This structure is in struct of array layout (SOA) for ray packets. Note that
the tfar member functions as an input and output.

In the ray packet mode (with packet size of N), the user has to provide a
pointer to N 32 bit integers that act as a ray activity mask. If one of these inte-
gers is set to 0x00000000 the corresponding ray is considered inactive and if the
integer is set to 0xFFFFFFFF, the ray is considered active. Rays that are inactive
will not update any hit information. Data alignment requirements for ray query
functions operating on single rays is 16 bytes for the ray.

Data alignment requirements for query functions operating on AOS packets
of 4, 8, or 16 rays, is 16, 32, and 64 bytes respectively, for the valid mask and the
ray. To operate on packets of 4 rays, the CPU has to support SSE, to operate on
packets of 8 rays, the CPU has to support AVX-256, and to operate on packets of
16 rays, the CPU has to support the Intel® Xeon Phi™ coprocessor instructions.
Additionally, the required ISA has to be enabled in Embree at compile time to
use the desired packet size.

Finding the closest hit distance is done through the rtcIntersect functions.
These get the activity mask, the scene, and a ray as input. The user has to initial-
ize the ray origin (org), ray direction (dir), and ray segment (tnear, tfar). The
ray segment has to be in the range [0,∞), thus ranges that start behind the ray
origin are not valid, but ranges can reach to infinity. The geometry ID (geomID
member) has to get initialized to RTC_INVALID_GEOMETRY_ID (-1). If the scene
contains instances, also the instance ID (instID) has to get initialized to RTC_
INVALID_GEOMETRY_ID (-1). If the scene contains linear motion blur, also the
ray time (time) has to get initialized to a value in the range [0, 1]. If ray masks
are enabled at compile time, also the ray mask (mask) has to get initialized. After
tracing the ray, the hit distance (tfar), geometry normal (Ng), local hit coordi-
nates (u, v), geometry ID (geomID), and primitive ID (primID) are set. If the scene
contains instances, also the instance ID (instID) is set, if an instance is hit. The
geometry ID corresponds to the ID returned at creation time of the hit geometry,
and the primitive ID corresponds to the nth primitive of that geometry, e.g. nth
triangle. The instance ID corresponds to the ID returned at creation time of the
instance.

The following code properly sets up a ray and traces it through the scene:

Embree API 25

RTCRay ray;
ray.org = ray_origin;
ray.dir = ray_direction;
ray.tnear = 0.f;
ray.tfar = inf;
ray.geomID = RTC_INVALID_GEOMETRY_ID;
ray.primID = RTC_INVALID_GEOMETRY_ID;
ray.instID = RTC_INVALID_GEOMETRY_ID;
ray.mask = 0xFFFFFFFF;
ray.time = 0.f;
rtcIntersect(scene, ray);

Testing if any geometry intersects with the ray segment is done through the
rtcOccluded functions. Initialization has to be done as for rtcIntersect. If
some geometry got found along the ray segment, the geometry ID (geomID) will
get set to 0. Other hit information of the ray is undefined after calling rtcOc-
cluded.

See tutorial00 for an example of how to trace rays.

4.4 Buffer Sharing
Embree supports sharing of buffers with the application. Each buffer that can be
mapped for a specific geometry can also be shared with the application, by pass a
pointer, offset, and stride of the application side buffer using the rtcSetBuffer
API function.

void rtcSetBuffer(RTCScene scene, unsigned geomID, RTCBufferType type,
void* ptr, size_t offset, size_t stride);

The rtcSetBuffer function has to get called before any call to rtcMap-
Buffer for that buffer, otherwise the buffer will get allocated internally and the
call to rtcSetBuffer will fail. The buffer has to remain valid as long as the ge-
ometry exists, and the user is responsible to free the buffer when the geometry
gets deleted. When a buffer is shared, it is safe to modify that buffer without
mapping and unmapping it. However, for dynamic scenes one still has to call
rtcModified for modified geometries and the buffer data has to stay constant
from the rtcCommit call to after the last ray query invocation.

The offset parameter specifies a byte offset to the start of the first element
and the stride parameter specifies a byte stride between the different elements
of the shared buffer. This support for offset and stride allows the application
quite some freedom in the data layout of these buffers, however, some restric-
tions apply. Index buffers always store 32 bit indices and vertex buffers always
store single precision floating point data. The start address ptr+offset and stride
always have to be aligned to 4 bytes on Intel® Xeon® CPUs and 16 bytes on
Xeon Phi accelerators, otherwise the rtcSetBuffer function will fail. For ver-
tex buffers, the 4 bytes after the z-coordinate of the last vertex have to be readable
memory, thus padding is required for some layouts.

The following is an example of how to create a mesh with shared index and
vertex buffers:

unsigned geomID = rtcNewTriangleMesh(scene, geomFlags, numTriangles, numVertices);
rtcSetBuffer(scene, geomID, RTC_VERTEX_BUFFER, vertexPtr, 0, 3*sizeof(float));
rtcSetBuffer(scene, geomID, RTC_INDEX_BUFFER, indexPtr, 0, 3*sizeof(int));

Sharing buffers can significantly reduce the memory required by the applica-
tion, thus we recommend using this feature. When enabling the RTC_COMPACT

Embree API 26

scene flag, the spatial index structures of Embree might also share the vertex
buffer, resulting in even higher memory savings.

The support for offset and stride is enabled by default, but can get disabled at
compile time using the RTCORE_BUFFER_STRIDE parameter in CMake. Disabling
this feature enables the default offset and stride which increases performance of
spatial index structure build, thus can be useful for dynamic content.

4.5 Linear Motion Blur
Triangle meshes and hair geometries with linear motion blur support are created
by setting the number of time steps to 2 at geometry construction time. Specify-
ing a number of time steps of 0 or larger than 2 is invalid. For a triangle mesh
or hair geometry with linear motion blur, the user has to set the RTC_VERTEX_
BUFFER0 and RTC_VERTEX_BUFFER1 vertex arrays, one for each time step.

unsigned geomID = rtcNewTriangleMesh(scene, geomFlags, numTris, numVertices, 2);
rtcSetBuffer(scene, geomID, RTC_VERTEX_BUFFER0, vertex0Ptr, 0, sizeof(Vertex));
rtcSetBuffer(scene, geomID, RTC_VERTEX_BUFFER1, vertex1Ptr, 0, sizeof(Vertex));
rtcSetBuffer(scene, geomID, RTC_INDEX_BUFFER, indexPtr, 0, sizeof(Triangle));

If a scene contains geometries with linear motion blur, the user has to set the
time member of the ray to a value in the range [0, 1]. The ray will intersect the
scenewith the vertices of the two time steps linearly interpolated to this specified
time. Each ray can specify a different time, even inside a ray packet.

4.6 User Data Pointer
A user data pointer can be specified and queried per geometry, to efficiently map
from the geometry ID returned by ray queries to the application representation
for that geometry.

void rtcSetUserData (RTCScene scene, unsigned geomID, void* ptr);
void* rtcGetUserData (RTCScene scene, unsigned geomID);

The user data pointer of some user defined geometry get additionally passed
to the intersect and occluded callback functions of that user geometry. Further,
the user data pointer is also passed to intersection filter callback functions at-
tached to some geometry.

The rtcGetUserData function is on purpose not thread safe with respect
to other API calls that modify the scene. Consequently, this function can be
used to efficiently query the user data pointer during rendering (also by multiple
threads), but should not get called while modifying the scene with other threads.

4.7 Geometry Mask
A 32 bit geometry mask can be assigned to triangle meshes and hair geometries
using the rtcSetMask call.

rtcSetMask(scene, geomID, mask);

Only if the bitwise and operation of this mask with the mask stored inside the
ray is not 0, primitives of this geometry are hit by a ray. This feature can be used
to disable selected triangle mesh or hair geometries for specifically tagged rays,
e.g. to disable shadow casting for some geometry. This API feature is disabled
in Embree by default at compile time, and can be enabled in CMake through the
RTCORE_ENABLE_RAY_MASK parameter.

Embree API 27

4.8 Filter Functions
The API supports per geometry filter callback functions that are invoked for each
intersection found during the rtcIntersect or rtcOccluded calls. The former
ones are called intersection filter functions, the latter ones occlusion filter func-
tions. The filter functions can be used to implement various useful features, such
as accumulating opacity for transparent shadows, counting the number of sur-
faces along a ray, collecting all hits along a ray, etc. Filter functions can also be
used to selectively reject hits to enable backface culling for some geometries. If
the backfaces should be culled in general for all geometries then it is faster to en-
able RTCORE_BACKFACE_CULLING during compilation of Embree instead of using
filter functions.

The filter functions provided by the user have to have the following signature:

void FilterFunc (void* userPtr, RTCRay& ray);
void FilterFunc4 (const void* valid, void* userPtr, RTCRay4& ray);
void FilterFunc8 (const void* valid, void* userPtr, RTCRay8& ray);
void FilterFunc16(const void* valid, void* userPtr, RTCRay16& ray);

The valid pointer points to a valid mask of the same format as expected
as input by the ray query functions. The userPtr is a user pointer optionally
set per geometry through the rtcSetUserData function. The ray passed to the
filter function is the ray structure initially provided to the ray query function
by the user. For that reason, it is safe to extend the ray by additional data and
access this data inside the filter function (e.g. to accumulate opacity). All hit
information inside the ray is valid. If the hit geometry is instanced, the instID
member of the ray is valid and the ray origin, direction, and geometry normal
visible through the ray are in object space. The filter function can reject a hit by
setting the geomIDmember of the ray to RTC_INVALID_GEOMETRY_ID, otherwise
the hit is accepted. The filter function is not allowed to modify the ray input data
(org, dir, tnear, tfar), but can modify the hit data of the ray (u, v, Ng, geomID,
primID).

The intersection filter functions for different ray types are set for some ge-
ometry of a scene using the following API functions:

void rtcSetIntersectionFilterFunction (RTCScene, unsigned geomID, RTCFilterFunc);
void rtcSetIntersectionFilterFunction4 (RTCScene, unsigned geomID, RTCFilterFunc4);
void rtcSetIntersectionFilterFunction8 (RTCScene, unsigned geomID, RTCFilterFunc8);
void rtcSetIntersectionFilterFunction16(RTCScene, unsigned geomID, RTCFilterFunc16);

These functions are invoked during execution of the rtcIntersect type
queries of the matching ray type. The occlusion filter functions are set using
the following API functions:

void rtcSetOcclusionFilterFunction (RTCScene, unsigned geomID, RTCFilterFunc);
void rtcSetOcclusionFilterFunction4 (RTCScene, unsigned geomID, RTCFilterFunc4);
void rtcSetOcclusionFilterFunction8 (RTCScene, unsigned geomID, RTCFilterFunc8);
void rtcSetOcclusionFilterFunction16(RTCScene, unsigned geomID, RTCFilterFunc16);

See tutorial05 for an example of how to use the filter functions.

Embree API 28

4.9 Displacement Mapping Functions
TheAPI supports displacementmapping for subdivisionmeshes. A displacement
function can be set for some subdivision mesh using the rtcSetDisplacement-
Function API call.

void rtcSetDisplacementFunction(RTCScene, unsigned geomID, RTCDisplacementFunc, RTCBounds*);

A displacement function of NULLwill delete an already set displacement func-
tion. The bounds parameter is optional. If NULL is passed as bounds, then the dis-
placement shader will get evaluated during the build process to properly bound
displaced geometry. If a pointer to some bounds of the displacement are passed,
then the implementation can choose to use these bounds to bound displaced ge-
ometry. When bounds are specified, then these bounds have to be conservative
and should be tight for best performance.

The displacement function has to have the following type:

typedef void (*RTCDisplacementFunc)(void* ptr, unsigned geomID, unsigned primID,
const float* u, const float* v,
const float* nx, const float* ny, const float* nz,
float* px, float* py, float* pz,
size_t N);

The displacement function is called with the user data pointer of the geom-
etry (ptr), the geometry ID (geomID) and primitive ID (primID) of a patch to
displace. For this patch, a number N of points to displace are specified in a struct
of array layout. For each point to displace the local patch UV coordinates (u and
v arrays), the normalized geometry normal (nx, ny, and nz arrays), as well as
world space position (px, py, and pz arrays) are provided. The task of the dis-
placement function is to use this information and move the world space position
inside the allowed specified bounds around the point.

All passed arrays are guaranteed to be 64 bytes aligned, and properly padded
to make wide vector processing inside the displacement function possible.

The displacement mapping functions might get called during the rtcCommit
call, or lazily during the rtcIntersect or rtcOccluded calls.

Also see tutorial09 for an example of how to use the displacement mapping
functions.

4.10 Sharing Threads with Embree
On some implementations, Embree supports using the application threads when
building internal data structures, by using the

void rtcCommitThread(RTCScene, unsigned threadIndex, unsigned threadCount);

API call to commit the scene. This function has to get called by all threads
that want to cooperate in the scene commit. Each call is provided the scene to
commit, the index of the calling thread in the range [0, threadCount-1], and the
number of threads that will call into this commit operation for the scene. All
threads will return again from this function after the scene commit is finished.

Multiple such scene commit operations can also be running at the same time,
e.g. it is possible to commit many small scenes in parallel using one thread per
commit operation. Subsequent commit operations for the same scene can use
different number of threads in the void rtcCommitThread() or use the Embree
internal threads using the void rtcCommit() call.

Note: When using Embree with the Intel® Threading Building Blocks (which
is the default) sharing of threads is not possible through rtcCommitThread, as

Embree API 29

TBB will always generate its own set of threads. Thus when using TBB the rtc-
CommitThread() call will still function, but always use the TBB threads for hier-
archy building. We recommend to also use TBB inside your application to share
threads with the Embree library. When enabling the Embree internal tasking
system the rtcCommitThread() feature will work as expected and use the ap-
plication threads for hierarchy building.

Note: On the Intel® Xeon Phi™ coprocessor the rtcCommitThread() feature
is recommended to be used.

4.11 Join Build Operation
If rtcCommit is called multiple times from different TBB threads on the same
scene, then all these threads will join the same scene build operation.

This feature allows a flexible way to lazily create hierarchies during render-
ing. A thread reaching a not yet constructed sub-scene of a two-level scene,
can generate the sub-scene geometry and call rtcCommit on that just generated
scene. During construction, further threads reaching the not-yet-built scene, can
join the build operation by also invoking rtcCommit. A thread that calls rtcCom-
mit after the build finishes, will directly return from the rtcCommit call (even
for static scenes).

Note: This mode only works with the Intel® Threading Building Blocks en-
abled as tasking system in Embree and your application. Embree will tag the
hierarchy build task as a high priority TBB task, which guarantees that worker
threads that join the build operation, will only pick TBB build tasks and no TBB
render tile tasks of your application. For this reason, never make your applica-
tion’s render tile task high priority in TBB.

4.12 Memory Monitor Callback
Using the memory monitor callback mechanism, the application can track the
memory consumption of Embree, and optionally terminate API calls that con-
sume too much memory.

The user provided memory monitor callback function has to have the follow-
ing signature:

bool (*RTCMemoryMonitorFunc)(const ssize_t bytes, const bool post);

A single such callback function can be registered by calling

rtcSetMemoryMonitorFunction(RTCMemoryMonitorFunc func);

and deregistered again by calling it with NULL. Once registered Embree will
invoke the callback function before or after it allocates or frees important mem-
ory blocks. The callback function might get called from multiple threads concur-
rently.

The application can track the current memory usage of the Embree library by
atomically accumulating the provided bytes input parameter. This parameter
will be >0 for allocations and <0 for deallocations. The post input parameter
is true if the callback function was invoked after the allocation or deallocation,
otherwise it is false.

Embree will continue its operation normally when returning true from the
callback function. If false is returned, Embree will cancel the current operation
with the RTC_OUT_OF_MEMORY error code. Cancellingwill only happenwhen
the callback was called for allocations (bytes > 0), otherwise the cancel request
will be ignored. If a callback that was invoked before the allocation happens
(post == false) cancels the operation, then the bytes parameter should not get

Embree API 30

accumulated, as the allocation will never happen. If a callback that was called
after the allocation happened (post == true) cancels the operation, then the
bytes parameter should get accumulated, as the allocation properly happened.
Issuing multiple cancel requests for the same operation is allowed.

4.13 Progress Monitor Callback
The progress monitor callback mechanism can be used to report progress of hi-
erarchy build operations and to cancel long lasting build operations.

The user provided progress monitor callback function has to have the follow-
ing signature:

bool (*RTCProgressMonitorFunc)(void* userPtr, const double n);

A single such callback function can be registered per scene by calling

rtcSetProgressMonitorFunction(RTCScene, RTCProgressMonitorFunc, void* userPtr);

and deregistered again by calling it with NULL for the callback function. Once
registered Embree will invoke the callback function multiple times during hierar-
chy build operations of the scene, by providing the userPtr pointer that was set
at registration time, and a double n in the range [0, 1] estimating the completion
amount of the operation. The callback function might get called from multiple
threads concurrently.

When returning true from the callback function, Embree will continue the
build operation normally. When returning false Embree will cancel the build
operation with the RTC_CANCELLED error code. Issuing multiple cancel re-
quests for the same build operation is allowed.

31

Chapter 5
Embree Tutorials

Embree comes with a set of tutorials aimed at helping users understand how Em-
bree can be used and extended. All tutorials exist in an ISPC and C version to
demonstrate the two versions of the API. Look for files named tutorialname_
device.ispc for the ISPC implementation of the tutorial, and files named tu-
torialname_device.cpp for the single ray C++ version of the tutorial. To start
the C++ version use the tutorialname executables, to start the ISPC version use
the tutorialname_ispc executables.

Under Linux Embree also comes with an ISPC version of all tutorials for the
Intel® Xeon Phi™ coprocessor. The executables of this version of the tutorials
are named tutorialname_xeonphi and only work if a Xeon Phi™ coprocessor
is present in the system. The Xeon Phi™ version of the tutorials get started
on the host CPU, just like all other tutorials, and will connect automatically to
one installed Xeon Phi™ coprocessor in the system. For the Intel® Xeon Phi™
coprocessor to find to Embree library you have to add the path to libembree_
xeonphi.so to the SINK_LD_LIBRARY_PATH variable.

For all tutorials, you can select an initial camera using the -vp (camera po-
sition), -vi (camera look-at point), -vu (camera up vector), and -fov (vertical
field of view) command line parameters:

./triangle_geometry -vp 10 10 10 -vi 0 0 0

You can select the initial windows size using the -size command line param-
eter, or start the tutorials in fullscreen using the -fullscreen parameter:

./triangle_geometry -size 1024 1024

./triangle_geometry -fullscreen

Implementation specific parameters can be passed to the ray tracing core
through the -rtcore command line parameter, e.g.:

./triangle_geometry -rtcore verbose=2,threads=1,accel=bvh4.triangle1

The navigation in the interactive display mode follows the camera orbit
model, where the camera revolves around the current center of interest. With
the left mouse button you can rotate around the center of interest (the point
initially set with -vi). Holding Control pressed while clicking the left mouse
button rotates the camera around its location. You can also use the arrow keys
for navigation.

You can use the following keys:

F1 Default shading
F2 Gray EyeLight shading
F3 Wireframe shading

Embree Tutorials 32

F4 UV Coordinate visualization
F5 Geometry normal visualization
F6 Geometry ID visualization
F7 Geometry ID and Primitive ID visualization
F8 Simple shading with 16 rays per pixel for benchmarking.
F9 Switches to render cost visualization. Pressing again reduces brightness.
F10 Switches to render cost visualization. Pressing again increases brightness.
f Enters or leaves full screen mode.
c Prints camera parameters.
ESC Exits the tutorial.
q Exits the tutorial.

5.1 Triangle Geometry

Figure 5.1

This tutorial demonstrates the creation of a static cube and ground plane
using triangle meshes. It also demonstrates the use of the rtcIntersect and
rtcOccluded functions to render primary visibility and hard shadows. The cube
sides are colored based on the ID of the hit primitive.

5.2 Dynamic Scene

Figure 5.2

This tutorial demonstrates the creation of a dynamic scene, consisting of sev-
eral deformed spheres. Half of the spheres use the RTC_GEOMETRY_DEFORMABLE
flag, which allows Embree to use a refitting strategy for these spheres, the other
half uses the RTC_GEOMETRY_DYNAMIC flag, causing a rebuild of their spatial data

Embree Tutorials 33

structure each frame. The spheres are colored based on the ID of the hit sphere
geometry.

5.3 User Geometry

Figure 5.3

This tutorial shows the use of user defined geometry, to re-implement in-
stancing and to add analytic spheres. A two level scene is created, with a triangle
mesh as ground plane, and several user geometries, that instance other scenes
with a small number of spheres of different kind. The spheres are colored using
the instance ID and geometry ID of the hit sphere, to demonstrate how the same
geometry, instanced in different ways can be distinguished.

5.4 Viewer

Figure 5.4

This tutorial demonstrates a simple OBJ viewer that traces primary visibility
rays only. A scene consisting of multiple meshes is created, each mesh sharing
the index and vertex buffer with the application. Demonstrated is also how to
support additional per vertex data, such as shading normals.

You need to specify an OBJ file at the command line for this tutorial to work:

./tutorial03 -i model.obj

Embree Tutorials 34

Figure 5.5

5.5 Instanced Geometry
This tutorial demonstrates the in-build instancing feature of Embree, by instanc-
ing a number of other scenes build from triangulated spheres. The spheres are
again colored using the instance ID and geometry ID of the hit sphere, to demon-
strate how the same geometry, instanced in different ways can be distinguished.

5.6 Intersection Filter

Figure 5.6

This tutorial demonstrates the use of filter callback functions to efficiently
implement transparent objects. The filter function used for primary rays, lets the
ray pass through the geometry if it is entirely transparent. Otherwise the shading
loop handles the transparency properly, by potentially shooting secondary rays.
The filter function used for shadow rays accumulates the transparency of all
surfaces along the ray, and terminates traversal if an opaque occluder is hit.

5.7 Pathtracer
This tutorial is a simple path tracer, building on tutorial03.

You need to specify an OBJ file and light source at the command line for this
tutorial to work:

./tutorial06 -i model.obj -ambientlight 1 1 1

Embree Tutorials 35

Figure 5.7

5.8 Hair Geometry

Figure 5.8

This tutorial demonstrates the use of the hair geometry to render a hairball.

5.9 Subdivision Geometry

Figure 5.9

This tutorial demonstrates the use of Catmull Clark subdivision surfaces. Per
default the edge tessellation level is set adaptively based on the distance to the
camera origin. Embree currently supports three different modes for efficiently
handling subdivision surfaces in various rendering scenarios. These three modes
can be selected at the command line, e.g. -lazy builds internal per subdivision
patch data structures on demand, -cache uses a small (per thread) tessellation
cache for caching per patch data, and -pregenerate to generate and store most
per patch data during the initial build process. The cachemode is most effective

Embree Tutorials 36

for coherent rays while providing a fixed memory footprint. The pregenerate
modes is most effective for incoherent ray distributions while requiring more
memory. The lazy mode works similar to the pregenerate mode but provides
a middle ground in terms of memory consumption as it only builds and stores
data only when the corresponding patch is accessed during the ray traversal. The
cache mode is currently a bit more efficient at handling dynamic scenes where
only the edge tessellation levels are changing per frame.

5.10 Displacement Geometry

Figure 5.10

This tutorial demonstrates the use of Catmull Clark subdivision surfaces with
procedural displacement mapping using a constant edge tessellation level.

5.11 BVH Builder
This tutorial demonstrates how to use the templated hierarchy builders of Em-
bree to build a bounding volume hierarchy with a user defined memory layout
using a high quality SAH builder and very fast morton builder.

5.12 Find Embree
This tutorial demonstrates howto use the FIND_PACKAGE CMake feature to use
an installed Embree. Under Linux and MacOSX the tutorial finds the Embree
installation automatically, under Windows the embree_DIR CMake variable
has to be set to the following folder of the Embree installation: C:\Program
Files\Intel\Embree X.Y.Z\lib\cmake\embree-X.Y.Z.

Embree Tutorials 37

© 2009–2015 Intel Corporation

Intel, the Intel logo, Xeon, Intel Xeon Phi, and Intel Core are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark andMobileMark, aremeasured using specific computer systems, components, software, operations
and functions. Any change to any of those factorsmay cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products.
For more complete information visit http://www.intel.com/performance.

OptimizationNotice: Intel’s compilersmay ormay not optimize to the same degree for non-Intelmicroprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations
not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference
Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804

http://www.intel.com/performance

	Embree Overview
	Version History
	Supported Platforms
	Embree Support and Contact

	Installation of Embree
	Windows Installer
	Windows ZIP File
	Linux RPMs
	Linux tar.gz files
	Mac OS X PKG Installer
	Mac OS X tar.gz file
	Linking ISPC applications with Embree

	Compiling Embree
	Linux and Mac OS X
	Windows
	CMake configuration

	Embree API
	Scene
	Geometries
	Ray Queries
	Buffer Sharing
	Linear Motion Blur
	User Data Pointer
	Geometry Mask
	Filter Functions
	Displacement Mapping Functions
	Sharing Threads with Embree
	Join Build Operation
	Memory Monitor Callback
	Progress Monitor Callback

	Embree Tutorials
	Triangle Geometry
	Dynamic Scene
	User Geometry
	Viewer
	Instanced Geometry
	Intersection Filter
	Pathtracer
	Hair Geometry
	Subdivision Geometry
	Displacement Geometry
	BVH Builder
	Find Embree

